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We present an iterative procedure that does 
not rely on calculus to model heat flow 
through a uniform bar of metal and thus 

avoids the use of the partial differential equation 
typically needed to describe heat diffusion. The pro-
cedure is based on first principles and can be done 
with students at the blackboard. It results in a plot 
that illustrates several principles of thermodynamics 
and can be easily implemented with a spreadsheet 
program on the computer.

The diffusion of heat through a material by con-
duction can be accurately described by a diffusion 
equation,1 which is beyond the scope of this paper and 
not used here. In the approach used here, we introduce 
only those equations appropriate to a first-year physics 
curriculum and then obtain an iterative, finite-ele-
ment, step-by-step solution that simulates heat con-
duction and that first-year physics students should be 
able to carry out. 

Two equations needed: the specific heat equation,2 
which specifies the temperature change when heat is 
transferred,
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and the Fourier heat conduction equation,2
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where T is the temperature, Qnet is the heat into a 
body minus the heat out, m is the body’s mass, c is 
the specific heat of the substance, A is the body’s 
cross-sectional area through which the heat flows, k 
is the thermal conductivity of the substance, t is the 
time during which the heat flows, and L is the body’s 
length along which the heat flows. (T2 – T1)/L is the 
temperature gradient in the direction of heat flow.

Assumptions to Aid the Numerical 
Solution

Consider the heat flow between adjacent cells with-
in a uniform bar such as that shown in Fig. 1. We will 
make the following assumptions to simplify matters: 

 
  •	The bar is of square cross section and each cell is 

a cube that occupies the entire cross section of the 
bar.  

  •	We enclose the bar in a coat of perfect insulation, 
leaving only a hole at one end that can be quickly 
closed by a plug of the same material.  
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Fig. 1. The initial arrangement.
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  •	We apply the flame of an ideal blowtorch through 
this hole to heat the first cell with an accurately 
measured amount of energy. 

  •	We instantly replace the plug of insulation. Our 
first cell is thus heated to a temperature defined by  
Eq. (1).  

The Algorithm

Our procedure is shown in the following list, which 
we call Table I.

To start off, we apply a known amount of thermal 
energy to cell 1 as described above. After this, the 
algorithm is:

A)	 Determine the internal energy of each cell in the bar.

B)	 Determine the temperature of each cell using  
Eq. (1).

C)	 Selecting a small time interval t, use Eq. (2) to find the 
heat flow over the cell boundaries.  

D)	 Since we know the past energy content of each cell, 
and the energy transfers over each cell boundary, we 
can then return to step (A) to calculate the energy con-
tent in each cell.  

This procedure will yield the same results, albeit in 
quantized form, as Eqs. (1) and (2).  

Now we must make some assumptions to enable 
our step-by-step solution. First, we assume that the en-
ergy in a cell is uniformly distributed over the volume 
of the cell. This is reasonable because the bar could be 
made of any thickness, and we know that heat travels 
by conduction through both thick and thin bars in a 
similar manner. During the conduction process the 
energy effectively travels a distance L, the length of a 
cell, when traveling to an adjacent cell.

Next, since we propose to look at the heat con-
tained in each cell at specific times, we make the as-
sumption that nothing unusual will happen to the 
heat flow between these observations, that is, that the 
energy flow will proceed in a predictable pattern, with-
out reversals, peaks, or dips. This is reasonable because 
we are able to make the elapsed time between these 
intervals as short as we like.  

As a corollary to this last assumption, we assume 
that the flow of heat across all boundaries is constant 
during the time interval under examination. This 
means that during the first time interval after we heat 
cell 1, we can assume that the only heat flow anywhere 
within the bar is across the boundary between cell 1 
and cell 2, with none between cell 2 and cell 3 and 
none between cell 3 and cell 4. This assumption will 
produce a certain amount of quantization error but 
should not interfere with either the concepts presented 
here or the accuracy of the simulation.  

Example Using Hand Calculations 
Over Four Iterations

For our example we have chosen to run our simu-
lation on a bar of copper instead of normalizing the 
various constants to more simple but unrealistic values.  
Copper has a thermal conductivity3 of 394 W/m.K, 
and its specific heat is 383 J/kg.K. Its density is  
8960 kg/m3.  

We found it convenient to make each of our cells 
5 cm, or 0.05 m, on a side. The mass of each cube is 
therefore 1.12 kg. For further convenience, we assume 
that we have refrigerated our bar to a uniform 0oC.  
Our ideal insulation will maintain that temperature 
until we apply the heat to cell 1. We have chosen to 
divide our example bar into four cells because this fits 
conveniently on a common blackboard and is not im-
practical to work by hand. Thus the bar is 20 cm long.  
It is to be noted that subdividing the same bar into 
eight 2.5-cm long cells gives the same final temperature 
after the same length of time.

To allow fairly accurate calculations without having 
to use many decimal places, we use an arbitrary but 
large amount of heat, 40,000 joules. This will raise cell 
1’s temperature by
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We then install our insulating plug and watch the 
heat flow through the bar, proceeding in time intervals 
of one second through the iterative procedure shown in 
Table I.    

Table I.
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Step (A) from Table I:  Taking the internal energy of 
the bar (and of each cell) as zero before the application 
of the blowtorch and starting the timer immediately 
thereafter, at time t = 0 s the cell internal energies are

  cell 1          cell 2        cell 3         cell 4
40,000 J        0 J              0 J              0 J   

(Students should be aware that we assign zero joules 
to the last three cells because we wish to examine the 
effects of the heat added to cell 1, not because the cells 
contain no energy.)

Step (B) from Table I: The cell temperatures at t = 0 s 
are:

  cell 1            cell 2        cell 3         cell 4
93.25oC          0oC         0oC           0oC 

Step (C) from Table I:  Now we look at how the heat 
flows from cell 1 to cell 2. The cross-sectional area A is 
(0.05 m)2, and the distance between the centers of the 
cells is 0.05 m. The thermal conductivity k is  
394 W/m.K; the time interval is 1 s, and the differ-
ence in temperature between the two cell centers is 
93.25oC  – 0oC. Equation (2) tells us that in the first 
time interval we’ve transferred 

Q = (93.25oC – 0oC) (0.05 m)2 (394 W/m.K) (1 s)/ 
(0.05 m) = 1837 J 		         		  (4)

from cell 1 to cell 2 in the first second. We assume 
that there is no heat transfer between cell 2 and cell 
3 because they are at equal temperatures, so there is 
no energy transfer across their common boundary; 
likewise between cells 3 and 4.   

Return to Step (A):  Accounting for the internal ener-
gy in each cell, we note that we have lost 1837 J from 
cell 1 to cell 2. Here is the way things now stand:

  cell 1            cell 2          cell 3         cell 4
38,163 J       1837 J           0 J              0 J

Step (B):  Now we calculate the new temperature in 
each cell. 1837 J of heat has flowed out of cell 1. It 
has a mass of 1.12 kg, and the specific heat of cop-
per is 383 J/kg.K, so the temperature of cell 1 is now 
changed by Q/mc:
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and in cell 2 it is 1837 J / [(1.12 kg) (383 J/kg.K)] = 
4.28oC, so our new cell temperatures are

   cell 1            cell 2         cell 3        cell 4
88.97oC      4.28oC        0oC          0oC   after one 

second.  

During the second time interval, heat will continue 
to flow from cell 1 to cell 2 and now, because there is a 
temperature differential across their common bound-
ary, from cell 2 to cell 3. Again we assume that since 
there was no temperature difference across the bound-
ary between cells 3 and 4 at the start of the time inter-
val, no heat flows into cell 4 during this interval. 

Step (C): Using the procedures in the previous calcula-
tion, we find that during our second 1-s time interval 
1668 J is transferred from cell 1 to cell 2, and 84 J 
flows from cell 2 to cell 3.

Return to Step (A): Now we must update our energy 
accounts (A). Clearly 1668 J has left cell 1 while cell 2 
has gained 1668 J and lost 84 J to cell 3. Our new cell 
internal energies are thus 

    cell 1            cell 2          cell 3         cell 4
36,495 J        3421 J          84 J             0 J  

Step (B): Our new cell temperatures are
    cell 1             cell 2           cell 3         cell 4
85.08oC        7.97oC       0.20oC         0oC  

Step (C): At the end of the third 1-s time interval, the 
following transfers will have occurred:

cell 1 to 2: 1386 J, cell 2 to 3: 209 J, cell 3 to 4: 11 J .
 

Return to Step (A): The new cell internal energies will 
thus be

  cell 1             cell 2          cell 3         cell 4
35,109 J         4598 J         282 J          11 J 
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Step (B):  giving the new temperatures
    cell 1              cell 2            cell 3             cell 4
81.54oC       11.16oC       0.54oC          0.01oC 

And so we watch the heat diffuse through the bar with 
each iteration.  

Example Using Spreadsheet Over 
300 Iterations

The simulation can be run for any amount of time 
and to any required accuracy in a spreadsheet such as 
Excel. In our example,

Column A is time.

Columns B–E are the temperatures of the four cells 
computed from the specific heat equation	 		
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Columns F–H are the heats transferred between two 
adjacent cells, Q12, Q23, and Q34, and are computed 
from the heat conduction equation

					                      	
						       (7)Q
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Each new row increments the solution by Dt.
Cells A1–E1 contain the various physical constants 

needed for the simulation as described.  
Figure 2 displays the first three rows of our Excel 

spreadsheet for the copper example presented in this 
paper. Figure 3 presents the solution after five minutes 
or 300 iterations.  

Lessons From the Graphs
This graph illustrates a great deal of thermody-

namic theory in a very compact form. First, note that 
the graphs have no minima; that is, the temperature of 
a cell never goes down and then back up. If there were 
a minimum of this sort, it would mean that the cell 
got cooler and then somehow regained its heat from its 

surroundings, which doesn’t happen in a closed system.  
Note also that the curves never dip beneath the time 

axis, thus reassuring us that a cell never becomes cooler 
than it was at the start of the experiment. And finally, note 
that all the cells ultimately warm up to equal temperatures, 
though it will take quite a while for this to happen.  
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time T1=T1prev–Q12/mc T2=T2prev+(Q12–Q23)/mc T3=T3prev+(Q23 –Q34)/mc T4=T4prev+Q34/mc Q12=(kA/L)Dt(T1–T2) Q23=(kA/L)Dt(T2–T3) Q34=(kA/L)Dt(T3–T4)

0 93.25 0 0 0 1837.00 0 0

1 88.97 4.28 0.00 0.00 1668.27 84.36 0.00

Fig. 2.  The first three rows of an Excel spreadsheet programmed to solve Eqs. (1) and (2). The values in red were computed 
by hand and used as initial values for the program. The values in black were computed by the program.

Heat Conduction Through a 4-cell Bar
              Temperature vs Time
                         ∆t = 1 s
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Fig. 3. The temperature of each cell as a function of time.
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